
Gregor v. Bochmann, University of Ottawa

Based on Powerpoint slides by Gunter Mussbacher
with material from:

G. Kotonya and I. Sommerville, M. Jackson, P. Heymans,
S. Somé 2008, and D. Amyot 2008

Requirements Verification and
Validation

SEG3101 (Fall 2010)

2
SEG3101 (Fall 2010). Requirements Verification and Validation

Table of Contents
• Introduction to Requirements Verification and Validation

• Requirements Verification and Validation Techniques
• Simple checks
• Prototyping
• Functional test design
• User manual development
• Reviews and inspections
• Model-based (formal) Verification and Validation

• The software is done. We are just trying to get it to work…1

[1] Anonymous

3
SEG3101 (Fall 2010). Requirements Verification and Validation

4
SEG3101 (Fall 2010). Requirements Verification and Validation

• Requirements Validation
• Check that the right product is being built
• Ensures that the software being

developed (or changed) will satisfy its
stakeholders

• Checks the software requirements specification
against stakeholders goals and requirements

• Requirements Verification
• Check that product is being built right
• Ensures that each step followed in the process of

building the software yields the right products
• Checks consistency of the software requirements

specification artefacts and other software
development products (design, implementation, ...)
against the specification

Requirements Verification and Validation
Introduction Simple Checks Prototyping Functional Test Design User Manual Formal V&V Reviews and Inspections

5
SEG3101 (Fall 2010). Requirements Verification and Validation

Requirements Verification and Validation (2)
• Help ensure delivery of what the client wants
• Need to be performed at every stage during the

(requirements) process
• Elicitation

• Checking back with the elicitation sources

• “So, are you saying that ?”

• Analysis
• Checking that the domain description and requirements are correct

• Specification
• Checking that the defined system requirement will meet the user

requirements under the assumptions of the domain/environment

• Checking conformity to well-formedness rules, standards…

Introduction Simple Checks Prototyping Functional Test Design User Manual Formal V&V Reviews and Inspections

6
SEG3101 (Fall 2010). Requirements Verification and Validation

The World and the Machine1

(or the problem domain and the system) These 6 slides are taken from Introduction to Analysis

• Validation question (do we build
the right system?) : if the domain-to-
be (excluding the system-to-
be) has the properties D, and
the system-to-be has the
properties S, then the
requirements R will be
satisfied.

D and S ⇒ R

• Verification question (do we
build the system right?) : if the
hardware has the properties
H, and the software has the
properties P, then the
system requirements S will
be satisfied.

C and P ⇒ S
• Conclusion:

D and C and P ⇒ R[1] M. Jackson, 1995

problem
domain

interface
solution
system

Hardware (C)
Software (P)

Domain
properties (D)
these are assumptions
about the environment
of the system-to-be
Requirements (R)

Specification (S)

Introduction Simple Checks Prototyping Functional Test Design User Manual Formal V&V Reviews and Inspections

7
SEG3101 (Fall 2010). Requirements Verification and Validation

Example
• Requirement

• (R) Reverse thrust shall only be enabled
when the aircraft is moving on runway.

• Domain Properties
• (D1) Deploying reverse thrust in mid-flight

has catastrophic effects.
• (D2) Wheel pulses are on if and only if wheels are turning.
• (D3) Wheels are turning if and only if the plane is moving on the

runway.
• System specification

• (S) The system shall allow reverse thrust to be enabled if and only if
wheel pulses are on.

• Does D1 and D2 and D3 and S ⇒ R?
• Are the domain assumptions (D) right? Are the requirement (R) or

specification (S) what is really needed?based on P. Heymans, 2005

Introduction Simple Checks Prototyping Functional Test Design User Manual Formal V&V Reviews and Inspections

The assumption D3 is false

because the plane may

hydroplane on wet runway.

8
SEG3101 (Fall 2010). Requirements Verification and Validation

Requirement specifications including assumptions
• Often the requirements for a system-to-be include

assumptions about the environment of the system.
• The system specification S, then, has the form:

S = A ⇒ G
where A are the assumptions about the environment and G

are the guarantees that the system will provide as long as
A hold.

• If these assumptions (A) are implied by the known properties
of the domain (D), that is D ⇒ A, and we can check that the
domain properties (D) and the system guarantees (G) imply
the requirements (R), that is D and G ⇒ R, then the
“validation condition” D and S ⇒ R is satisfied.

9
SEG3101 (Fall 2010). Requirements Verification and Validation

Specification with assumptions and guarantees (example)

Example: A power utility provides electricity to a client. The
problem is that the monthly invoice is not related to the
electricity consumption, because there is no information
about this consumption.

• Idea of a solution: introduce an electricity counter.
• Specification of the electricity counter

• Inputs and outputs
• input power from utility (voltage, current) – voltage supplied by

utility
• output power to client (voltage, current) – current used by client
• Reset button (input)
• consumption (output - watt-hours of electricity consumption)

10
SEG3101 (Fall 2010). Requirements Verification and Validation

Example (suite)
• Assumptions

• Input voltage < 500 Volts (determined by utility)
• Output current < 20 Amps (determined by client)

• Guarantees
• Output voltage = input voltage
• Input current = output current
• Consumption output shall indicate the consumption since the last

reset operation, that is, the integral of (output voltage x output
current) over the time period from the occurrence of the last reset
operation to the current time instant.

•Software example
• Specification of a method providing the interface “List search(Criteria c.

Assumption: c is a data structure satisfying the Criteria class properties.
Guarantee: the returned result is a list satisfying the List class properties and
includes all items from the database that satisfy c.

11
SEG3101 (Fall 2010). Requirements Verification and Validation

Formal Verification and Validation
• Evaluating the satisfaction of “D and S ⇒ R” is difficult with

natural language
• Descriptions are verbose, informal, ambiguous, incomplete...
• This represents a risk for the development and organization

• Verification of this “validation question” is more effective with
formal methods (see below)

• Based on mathematically formal syntax and semantics
• Proving can be tool-supported

• Depending on the modeling formalism used, different
verification methods and tools may be applied. We call this
“Model-Based V&V”

• In the case of the aircraft example above, we used Logic to write down
statements about the model. This is a particular case of modeling
formalism.

Introduction Simple Checks Prototyping Functional Test Design User Manual Formal V&V Reviews and Inspections

12
SEG3101 (Fall 2010). Requirements Verification and Validation

V&V vs. Analysis
• Both have several activities in common

• Reading requirements, problem analysis, meetings and discussions...

• Analysis works with raw, incomplete requirements as elicited
from the system stakeholders

• Develop a software requirements specification document
• Emphasis on "we have the right requirements"

• Requirements V&V works with a software requirements
specification and with negotiated and agreed (and
presumably complete) domain requirements

• Check that this these specifications are accurate
• Emphasis on "we have the right requirements well done"

Introduction Simple Checks Prototyping Functional Test Design User Manual Formal V&V Reviews and Inspections

Requirements V&V Techniques

14
SEG3101 (Fall 2010). Requirements Verification and Validation

Various Requirements V&V Techniques
• Simple checks

• Traceability, well-written requirements
• Prototyping
• Functional test design
• User manual development
• Reviews and inspections

• Walkthroughs
• Formal inspections
• Checklists

• Model-Based V&V
• First-order logic
• Behavioral models

Introduction Simple Checks Prototyping Functional Test Design User Manual Formal V&V Reviews and Inspections

15
SEG3101 (Fall 2010). Requirements Verification and Validation

Simple Checks
• Various checks can be done using traceability techniques

• Given the requirements document, verify that all elicitation notes are
covered

• Tracing between different levels of requirements
• Checking goals against tasks, features, requirements…

• Involves developing a traceability matrix
• Ensures that requirements have been taken into consideration (if not

there should be a reason)
• Ensures that everything in the specification is justified

• Verify that the requirements are well written (according to the
criteria already discussed)

Introduction Simple Checks Prototyping Functional Test Design User Manual Formal V&V Reviews and Inspections

16
SEG3101 (Fall 2010). Requirements Verification and Validation

Prototyping (1)
• Excellent for validation by users and customers

• More accessible than specification
• Demonstrate the requirements and help stakeholders discover

problems

• Come in all different shapes and sizes
• From paper prototype of a computerized system to formal executable

models/specifications
• Horizontal, vertical
• Evolutive, throwaway

Introduction Simple Checks Prototyping Functional Test Design User Manual Formal V&V Reviews and Inspections

17
SEG3101 (Fall 2010). Requirements Verification and Validation

Prototyping (2)
• Important to choose scenarios or use cases for elicitation

session

• Prototyping-based validation steps
• Choose prototype testers
• Develop test scenarios

• Careful planning is required to draw up a set of test scenarios which
provide broad coverage of the requirements

• Users should not just play around with the system as this may never
exercise critical system features

• Execute test scenarios
• Document problems using a problem reporting tool

Introduction Simple Checks Prototyping Functional Test Design User Manual Formal V&V Reviews and Inspections

18
SEG3101 (Fall 2010). Requirements Verification and Validation

Comment on next two techniques
• The two V&V techniques, namely Functional Test Design and

User Manual Development, are not really V&V techniques.
• They are activities that must be performed anyway, and they

are based on the specification document.
• Through these activities, as for any other activities based on the

specification document, errors and other problems with this document
may be detected.

19
SEG3101 (Fall 2010). Requirements Verification and Validation

Functional Test Design
• Functional tests at the system level must be developed

sooner or later...
• Can (and should) be derived from the requirements specification
• Each (functional) requirement should have an associated test
• Non-functional (e.g., reliability) or exclusive (e.g., define what should

not happen) requirements are harder to validate with testing
• Each requirements test case must be traced to its requirements
• Inventing requirements tests is an effective validation technique

• Designing these tests may reveal errors in the specification
(even before designing and building the system)!

• Missing or ambiguous information in the requirements description may
make it difficult to formulate tests

• Some software development processes (e.g., agile methods)
begin with tests before programming Test-Driven
Development (TDD)

Introduction Simple Checks Prototyping Functional Test Design User Manual Formal V&V Reviews and Inspections

20
SEG3101 (Fall 2010). Requirements Verification and Validation

User Manual Development
• Same reasoning as for functional test design

• Has to be done at some point
• Reveals problems earlier

• Forces a detailed look at requirements
• Particularly useful if the application is rich in user interfaces /

for usability requirements

• Typical information in a user manual
• Description of the functionality
• How to get out of trouble
• How to install and get started with the system

Introduction Simple Checks Prototyping Functional Test Design User Manual Formal V&V Reviews and Inspections

21
SEG3101 (Fall 2010). Requirements Verification and Validation

Reviews and Inspections (1)
• A group of people read and analyze requirements, look for

potential problems, meet to discuss the problems, and agree
on a list of action items needed to address these problems

• A widely used requirements validation technique
• Lots of evidence of effectiveness of the technique

• Can be expensive
• Careful planning and preparation
• Pre-review checking
• Need appropriate checklists (must be developed if necessary and

maintained)

Introduction Simple Checks Prototyping Functional Test Design User Manual Formal V&V Reviews and Inspections

22
SEG3101 (Fall 2010). Requirements Verification and Validation

Reviews and Inspections (2)
• Different types of reviews with varying degrees of formality

exist (similar to JAD vs. brainstorming sessions)
• Reading the document

• A person other than the author of the document

• Reading and approval (sign-off)
• Encourages the reader to be more careful (and responsible)

• Walkthroughs
• Informal, often high-level overview

• Can be led by author/expert to educate others on his/her work

• Formal inspections
• Very structured and detailed review, defined roles for participants,

preparation is needed, exit conditions are defined

• E.g., Fagan Inspection

Introduction Simple Checks Prototyping Functional Test Design User Manual Formal V&V Reviews and Inspections

23
SEG3101 (Fall 2010). Requirements Verification and Validation

Reviews and Inspections (3)
• Different types of reviews (cont’d)

• Focused inspections
• Reviewers have roles, each reviewer looks only for specific types of errors

• Active reviews
• Author asks reviewer questions which can only be answered with the help

of the document to be reviewed

Introduction Simple Checks Prototyping Functional Test Design User Manual Formal V&V Reviews and Inspections

24
SEG3101 (Fall 2010). Requirements Verification and Validation

Typical Review / Inspection Steps (1)
• Plan review

• The review team is selected and a time and place for the review
meeting is chosen

• Distribute documents
• The requirements document is distributed to the review team members

Introduction Simple Checks Prototyping Functional Test Design User Manual Formal V&V Reviews and Inspections

25
SEG3101 (Fall 2010). Requirements Verification and Validation

Typical Review / Inspection Steps (2)
• Prepare for review

• Individual reviewers read the requirements to find conflicts, omissions,
inconsistencies, deviations from standards, and other problems

• Hold review meeting
• Individual comments and problems are discussed and a set of action

items to address the problems is established

Introduction Simple Checks Prototyping Functional Test Design User Manual Formal V&V Reviews and Inspections

26
SEG3101 (Fall 2010). Requirements Verification and Validation

Typical Review / Inspection Steps (3)
• Follow-up actions

• The chair of the review checks that the agreed action items have been
carried out

• Revise document
• Requirements document is revised to reflect the agreed action items
• At this stage, it may be accepted or it may be re-reviewed

Introduction Simple Checks Prototyping Functional Test Design User Manual Formal V&V Reviews and Inspections

27
SEG3101 (Fall 2010). Requirements Verification and Validation

Review Team
• Reviews should involve a number of stakeholders drawn from

different backgrounds
• People from different backgrounds bring different skills and knowledge

to the review
• Stakeholders feel involved in the RE process and develop an

understanding of the needs of other stakeholders
• Review team should always involve at least a domain expert and a

user

Introduction Simple Checks Prototyping Functional Test Design User Manual Formal V&V Reviews and Inspections

28
SEG3101 (Fall 2010). Requirements Verification and Validation

Review – Problem Categorization
• Requirements clarification

• The requirement may be badly expressed or may have accidentally
omitted information which has been collected during requirements
elicitation

• Missing information
• Some information is missing from the requirements document

• Requirements conflict
• There is a significant conflict between requirements
• The stakeholders involved must negotiate to resolve the conflict

• Unrealistic requirement
• The requirement does not appear to be implementable with the

technology available or given other constraints on the system
• Stakeholders must be consulted to decide how to make the

requirement more realistic

Introduction Simple Checks Prototyping Functional Test Design User Manual Formal V&V Reviews and Inspections

29
SEG3101 (Fall 2010). Requirements Verification and Validation

Pre-Review Checking
• Reviews can be expensive because they involve many

people over several hours reading and checking the
requirements document

• We can reduce this cost by asking someone to make a first
pass called the pre-review

• Check the document and look for straightforward problems such as
missing requirements (sections), lack of conformance to standards,
typographical errors, etc.

Introduction Simple Checks Prototyping Functional Test Design User Manual Formal V&V Reviews and Inspections

30
SEG3101 (Fall 2010). Requirements Verification and Validation

Fagan Inspection (1)
• Formal and structured inspection process

Note: the boss is not
involved in the process!

Introduction Simple Checks Prototyping Functional Test Design User Manual Formal V&V Reviews and Inspections

31
SEG3101 (Fall 2010). Requirements Verification and Validation

Fagan Inspection (2)
• Characterized by rules on who should participate, how many

reviewers should participate, and what roles they should play
• Not more than 2 hours at a time, to keep participants focused
• 3 to 5 reviewers
• Author serves as the presenter of the document
• Metrics are collected

• Important: the author’s supervisor does not participate in the inspection
and does not have access to data

• This is not an employee evaluation

• Moderator is responsible for initiating the inspection, leading the
meeting, and ensuring issues found are fixed

• All reviewers need to prepare themselves using checklists
• Issues are recorded in special forms

Introduction Simple Checks Prototyping Functional Test Design User Manual Formal V&V Reviews and Inspections

32
SEG3101 (Fall 2010). Requirements Verification and Validation

Fagan Inspection (3)
• The inspection meeting is like a brainstorming session to

identify (potential) problems
• Re-inspection if > 5% of the document change

• Some variants are less tolerant... too easy to introduce new errors
when correcting the previous ones!

Introduction Simple Checks Prototyping Functional Test Design User Manual Formal V&V Reviews and Inspections

33
SEG3101 (Fall 2010). Requirements Verification and Validation

Active Review

• Reviewer is asked to use the specification
• Author poses questions for the reviewer to

answer that can be answered only by
reading the document

• Author may also ask reviewer to simulate a
set of scenarios

Introduction Simple Checks Prototyping Functional Test Design User Manual Formal V&V Reviews and Inspections

34
SEG3101 (Fall 2010). Requirements Verification and Validation

Requirements Review Checklists (1)
• Essential tool for an effective review process

• List common problem areas and guide reviewers
• May include questions an several quality aspects of the document:

comprehensibility, redundancy, completeness, ambiguity, consistency,
organization, standards compliance, traceability ...

• There are general checklists and checklists for particular
modeling and specification languages

• Checklists are supposed to be developed and maintained

• See example on course website

Introduction Simple Checks Prototyping Functional Test Design User Manual Formal V&V Reviews and Inspections

35
SEG3101 (Fall 2010). Requirements Verification and Validation

Requirements Review Checklists (2)
• Sample of elements in a requirements review checklist

• Comprehensibility – can readers of the document understand what the
requirements mean?

• Redundancy – is information unnecessarily repeated in the
requirements document?

• Completeness – does the checker know of any missing requirements
or is there any information missing from individual requirement
descriptions?

• Ambiguity – are the requirements expressed using terms which are
clearly defined? Could readers from different backgrounds make
different interpretations of the requirements?

• Consistency – do the descriptions of different requirements include
contradictions? Are there contradictions between individual
requirements and overall system requirements?

Introduction Simple Checks Prototyping Functional Test Design User Manual Formal V&V Reviews and Inspections

36
SEG3101 (Fall 2010). Requirements Verification and Validation

Requirements Review Checklists (3)
• Sample of elements (cont’d)

• Organisation – is the document structured in a sensible way? Are the
descriptions of requirements organised so that related requirements
are grouped?

• Conformance to standards – does the requirements document and
individual requirements conform to defined standards? Are departures
from the standards justified?

• Traceability – are requirements unambiguously identified? Do they
include links to related requirements and to the reasons why these
requirements have been included?

Introduction Simple Checks Prototyping Functional Test Design User Manual Formal V&V Reviews and Inspections

37
SEG3101 (Fall 2010). Requirements Verification and Validation

Comments on Reviews and Inspections
• Advantages

• Effective (even after considering cost)
• Allow finding sources of errors (not only symptoms)
• Requirements authors are more attentive when they know their work

will be closely reviewed
• Encourage them to conform to standards

• Familiarize large groups with the requirements (buy-in)
• Diffusion of knowledge

• Risks
• Reviews can be dull and draining (need to be limited in time)
• Time consuming and expensive (but usually cheaper than the

alternative)
• Personality problems
• Office politics…

Introduction Simple Checks Prototyping Functional Test Design User Manual Formal V&V Reviews and Inspections

Model-based (formal)
Verification and Validation

39
SEG3101 (Fall 2010). Requirements Verification and Validation

The problem domain and the system – copied from
Introduction to Analysis and Specification

• Validation question (do we build
the right system?) : if the domain-to-
be (excluding the system-to-
be) has the properties D, and
the system-to-be has the
properties S, then the
requirements R will be
satisfied.

D and S ⇒ R

• Verification question (do we
build the system right?) : if the
hardware has the properties
H, and the software has the
properties P, then the
system requirements S will
be satisfied.

C and P ⇒ S
• Conclusion:

D and C and P ⇒ R[1] M. Jackson, 1995

problem
domain

interface
solution
system

Hardware (C)
Software (P)

Domain
properties (D)
these are assumptions
about the environment
of the system-to-be
Requirements (R)

Specification (S)

Introduction Simple Checks Prototyping Functional Test Design User Manual Formal V&V Reviews and Inspections

40
SEG3101 (Fall 2010). Requirements Verification and Validation

Modeling paradigms
• Modeling paradigms

• Entity-Relationship modeling – e.g. UML Class diagrams
• Workflow modeling notations – there are many different “dialects”,

such as UML Activity diagrams, UCM, BPML, Petri nets (a very simple
formal model), Colored Petri nets

• State machines – e.g. Finite State Machines (FSM – a very simple
formal model), extended FSMs, such as UML State diagrams

• First-order logic – notations such as Z, VDM, UML-OCL, etc.
• Can be used as an add-on with the other paradigms above, by providing

information about data objects and relationships (possibly in the form of
“assertions” or “invariants” that hold at certain points during the dynamic
execution of the model)

• Can be used alone, expressing structural models and behavioral models
(there are many examples of using Z for such purpose)

Introduction Simple Checks Prototyping Functional Test Design User Manual Formal V&V Reviews and Inspections

41
SEG3101 (Fall 2010). Requirements Verification and Validation

Formal V&V techniques and tools (i)
• Available V&V techniques will vary from one modeling

paradigms to another and will also depend on the available
tools (that usually only apply to a particular “dialect” of the modeling paradigm)

• The following functions may be provided through tools
• Completeness checking – only according to certain syntax rules, templates
• Consistency checking : given model M, show that M does not imply a contradiction

and does not have any other undesirable general property (e.g. deadlock possibility)
• Refinement checking : given two models M and M’, show that the properties of M imply the properties

of M’. This can be used for the validation of the system specification S, that is, showing that D and S ⇒ R where D

are the domain properties and R are the domain requirements (M = D and S; M’ = R)

• Model checking : given a model M and some properties P, show that any system
implementation satisfying M will have the properties P

• Generation of system designs or prototype implementations (from workflow

or state machine models)

• Generation of test cases
• Performance evaluation

42
SEG3101 (Fall 2010). Requirements Verification and Validation

Formal V&V techniques and tools (ii)
• Consistency and Refinement checking

• Logic models
• Theorem proving

• Workflow and State machine models
• Simulated execution (prototype implementations)
• Reachability analysis (determining all reachable states of a system

consisting of a composition of several state machines, or of a
workflow model). In contrast, simulated execution will only perform partial
analysis – namely a certain number of test cases (note: one may consider a very
large number of such cases, possibly randomly generated).

• These techniques have first be developed for distributed systems (communication
protocols), see Some notes on the history of protocol engineering (G. v.
Bochmann, D. Rayner and C. H. West) to be published in Computer Networks
journal. - http://www.site.uottawa.ca/~bochmann/dsrg/PublicDocuments/Publications/Boch10a-submitted.pdf

43
SEG3101 (Fall 2010). Requirements Verification and Validation

Consistency checking for state machines
• Different types of refinements

• Refinement (also called Conformance) between two machines (for
example, one abstract and the other one more concrete)

• Reduction of non-determinism

• Reduction of optional behavior (compliant, but some behaviors are not
supported)

• Extension (conformance, but some new events are treated and lead to
new behaviors)

• Equivalence checking
• Between two machines (for example, one abstract and the other one more

concrete)

• Several types of equivalence: trace equivalence (same traces of events
can be observed), refusal equivalence (same blocking behavior),
observational equivalence (equivalent states in both machines), etc.

Introduction Structured Analysis OO Analysis Problem Frames State Machine-Based Analysis Triage/Prioritization

44
SEG3101 (Fall 2010). Requirements Verification and Validation

Formal V&V techniques and tools (iii)
• Model checking: Is normally used for behavioral workflow

and state machine models (however, the Alloy tool can also
be used for checking structural Class diagram models).

• Uses the approach of reachability analysis
• The typical properties to be verified for a given model

could be the following (note: can also be checked by simulated execution):
• General properties (to be satisfied by most systems):

• Absence of deadlocks in a system with concurrency
• No non-specified messages, that is, for all events that may occur their

handling is defined
• All states can be reached and all transitions can be traversed

• Specific properties (depending on this particular system): Such
specific properties must be specified in some suitable notation, such as

• Logic assertions or invariants
• Temporal logic (extension of predicate calculus with two operators:

always and eventually (corresponding to Maintain/Avoid goals and
Achieve goals, respectively)

45
SEG3101 (Fall 2010). Requirements Verification and Validation

Different types of goals – copied from Goal-oriented modeling

• Behavioral goal: establishment of goal can be checked
• Describes intended behavior declaratively
• Implicitly defines a maximal set of admissible behaviors

• Achieve: points to future (like “eventually” operator in Temporal Logic)

• Maintain/Avoid: states property that always holds (like “always” operator)

• Soft-Goal: are more or less fulfilled by different alternatives of
(external) design – often difficult to quantify – one says, some
alternative may “satisfice” the goal

46
SEG3101 (Fall 2010). Requirements Verification and Validation

Model checking
• Verifies that the model satisfies temporal logic

properties, for example:
• If A occurs, B will occur in the future (eventually)

• If C occurs, D will be true always in the future

• Traverse systematically all possible behaviors
(execution paths) of the machine (reachability
analysis)

• Verification of properties done after reachability
analysis or on the fly

• Model checker verifies M ⇒ P (if no trace of states and transitions
leading to the violation of P is found) – otherwise a counter example
trace is provided

• Major obstacle is state space explosion

Introduction Structured Analysis OO Analysis Problem Frames State Machine-Based Analysis Triage/Prioritization

Example tools:
SPIN (see http://spinroot.com/spin/whatispin.html) - for distributed systems with message passing

Alloy (see http://alloy.mit.edu/community/) – for OO Class diagrams with assertions

Performance modeling and
evaluation

48
SEG3101 (Fall 2010). Requirements Verification and Validation

Performance Analysis
Recall URN Example I
• Which of the three wireless IN alternative architectures is the

best for this scenario?
• Service and Data in MsgSwitchingCenter
• Service in MsgSwitchingCenter, Data in ServiceNode
• Service and Data in ServiceControlPoint

• Different approaches to performance analysis
• Informal: Qualitative analysis with GRL strategies
• Counting the number of messages involved: e.g. transformations of

workflow scenarios into sequence diagrams
• Model-based performance evaluation

• Queuing models : consider resources, service times and request queuing

• Markov models : consider transition probabilities of state machine models

Basics Transformations UC GRL RM Traversal Performance Testing BPM AOM Reverse E. Tool MM URN Summary

49
SEG3101 (Fall 2010). Requirements Verification and Validation

Performance modeling : Markov models
• Markov models

• State machine model where each transition has a given rate of
occurrence; this leads to an exponential distribution of the sejourn time
in a given state.

• This modeling paradigm is often used for modeling reliability,
availability etc.

• Example: Machine may be operational or failed. In the operational
state, the rate of the failing transition is 0.001 per hour, in the failed
state, the rate of the repaired transition (back to the operational state)
is 1.0 per hour (the machine remains in the failed state a duration that
has an exponential distribution with average 1 hour).

50
SEG3101 (Fall 2010). Requirements Verification and Validation

Performance modeling : Queuing models
• Queuing models

• One considers: user requests, resources (servers), service times (for
processing requests by resources) and request queuing

• One talks about queueing networks – a kind of workflow model
involving several resources providing various services and requests
that flow between resources (closed system: users are also modeled
as resources – open system: users are outside the “system”)

• The performance of workflow models (UML Activity diagrams or
UCMs) can be naturally modeled by queueing networks.

• The jUCMNav provides for the automatic transformation into such a model
using an intermediate representation called Core Senario Model (CSM)

• The functional workflow model must be complemented with
performance parameters in order to provide the necessary input data
for performance modeling. This includes:

• Performance data on resources: e.g. service times, queuing disciplines, etc.

• Performance data on work load: e.g. number of requests per unit time, etc.

51
SEG3101 (Fall 2010). Requirements Verification and Validation

Performance evaluation tools
• For both, Markov and Queuing models, there are two basic

approaches to performance evaluation:
• Analytical formulas
• Simulation studies

• Special versions of modeling paradigms
• Layered Queuing Networks (LQN - using several layers of abstraction,

like layered operating system functions) – developed by Dr. Woodside
at Carleton University

• Stochastic Petri nets (Markov’s rate-based transitions applied to Petri
nets)

52
SEG3101 (Fall 2010). Requirements Verification and Validation

Typical Performance Results from Queuing models
• General statistics

• Elapsed time, system time…
• Measured quantities

• Service demands, number of blocking and non-blocking calls, call
delays, synchronization delays

• Service times
• For every entry and activity, with confidence intervals and variances

(where relevant)
• Throughputs and utilizations for every entry and activity, with

confidence intervals
• Utilizations and waiting times for devices (by entry)

Basics Transformations UC GRL RM Traversal Performance Testing BPM AOM Reverse E. Tool MM URN Summary

53
SEG3101 (Fall 2010). Requirements Verification and Validation

• Automated translation to Core Scenario Model (CSM) for
analytical evaluations and simulations

Security E_Accountant

Ready
ContinueCheckBio

TaxPayer

Access

Resource Characteristics
• Passive/active, external operations
• Disks, processors, …
• Operation time
• Multiplicity

Rejected

Workload
Characteristics
• Poisson, periodic…
• Population size
• Open/closed

Responsibilities
• Host demand
• External op. demands
• Multiplicity

OR Forks and
Dynamic Stubs
• Probability

Components
• Allocated responsibilities
• Resource assignment

Example: Performance Annotations for UCMs
Basics Transformations UC GRL RM Traversal Performance Testing BPM AOM Reverse E. Tool MM URN Summary

54
SEG3101 (Fall 2010). Requirements Verification and Validation

Resource Management
Basics Transformations UC GRL RM Traversal Performance Testing BPM AOM Reverse E. Tool MM URN Summary

55
SEG3101 (Fall 2010). Requirements Verification and Validation

Demand and Workload Management
Basics Transformations UC GRL RM Traversal Performance Testing BPM AOM Reverse E. Tool MM URN Summary

56
SEG3101 (Fall 2010). Requirements Verification and Validation

From UCM to Core Scenario Model (CSM)
• Export CSM (XML) from URN model
• Translation of CSM file to LQN, QN, stochastic Petri Nets…

Basics Transformations UC GRL RM Traversal Performance Testing BPM AOM Reverse E. Tool MM URN Summary

57
SEG3101 (Fall 2010). Requirements Verification and Validation

LQN Generation from UCMs (2)
• Useful for various types of analyses

• Sensitivity (importance or impact
of parameters)

• Scalability (what if there are
more users/requests?)

• Concurrency (what if there are
more/fewer threads?)

• Deployment and configuration
(different hardware allocation)

• Quantitative evaluation of
architecture!

Source: D.B. Petriu et al., 2003

Basics Transformations UC GRL RM Traversal Performance Testing BPM AOM Reverse E. Tool MM URN Summary

58
SEG3101 (Fall 2010). Requirements Verification and Validation

Some industrial experience
• Bochmann did some consulting for DMR in the 1990ies.
• DMR is a big software and systems analysis consulting

company based in Montreal.
• At that time, the DMR used internally a tool that allowed to

define workflow models with resource constraints and to
perform simulated execution of these models in order to
evaluate the performance of such models depending on the
available resources and scheduling constraints.

• The tool was used in the consulting assignments that were
performed by the company.

Model transformations:
Test case derivation

60
SEG3101 (Fall 2010). Requirements Verification and Validation

Model-based testing
• Behavioral models can be used for

• Deriving test cases
• Providing an oracle that predicts the correct output expected for given

inputs. (However: if the behavioral model is non-deterministic – for a
given input there may be different outputs – then this is quite difficult)

• This is black-box testing – the system implementation under
test is observed only at its external interfaces – no internal
view

• Test cases – two complementary coverage issues
• Covering different control flows through the behavior
• Covering different data parameter values
• Question of executability of given control flow path with given data

parameters

61
SEG3101 (Fall 2010). Requirements Verification and Validation

Coverage issues for black-box testing
• Issues of control flow coverage

• All branches of the behavioral model will be exercised at least once
• E.g. so-called transition tour for FSM model

• All paths … (leads normally to too many test cases)
• Covering all faults – one needs a fault model

• Fault model for FSMs:

• Output faults (wrong output produced): will be detected by transition tour

• Transfer faults (wrong next state): difficult to detect - either introduce state
visibiility, or use so-called state identification test sequences

62
SEG3101 (Fall 2010). Requirements Verification and Validation

Automating test development from models ?
• FSM models:

• There has been much work on deriving test suites (sets of test cases)
from FSM models (for different coverage criteria)

• UCM models:
• Deriving sequence diagram (test case – without data) for each

scenario that can be realized from the given UCM
• Automatic generation of scenarios and corresponding test cases (see

next page)

Basics Transformations UC GRL RM Traversal Performance Testing BPM AOM Reverse E. Tool MM URN Summary

63
SEG3101 (Fall 2010). Requirements Verification and Validation

Test Generation for Web Applications

Config. FileConfig. File

UCMNAVUCMNAV

UCM File
(+ scen. defs)

UCM File
(+ scen. defs)

XML Files
(scenarios)
XML Files
(scenarios)

Test
Pages
Test

PagesUCM2FIT FitNesse

User-sel-
ected values

User-sel-
ected values

FixturesFixtures

Test ResultsTest Results

Web Application
(widget.com)

Source: Amyot, Roy, and Weiss, 2005

Basics Transformations UC GRL RM Traversal Performance Testing BPM AOM Reverse E. Tool MM URN Summary

There are some partial results available…

• Use of jUCMNav, scenario definitions, and
Fitnesse to generate executable test cases for a
typical Web application

Model transformations:
Deriving distributed system

designs

65
SEG3101 (Fall 2010). Requirements Verification and Validation

The problem

This is an ongoing research project
by Bochmann’s group

 Service2

Service1

Service3

C 1 C 2 C 3 C 4

Service models

Design models

Implementations

S1.1 S1.2

Design synthesis

Code generation

Service2

Service1

Service3

C 1 C 2 C 3 C 4

Service models

Design models

Implementations

S1.1 S1.2

Design synthesis

Code generation

66
SEG3101 (Fall 2010). Requirements Verification and Validation

Type of applications

• Communication services
• telephony features (e.g. call waiting)
• teleconference involving many parties
• Social networking

• Workflows
• Intra-organization, e.g. banking application, manufacturing
• inter-organisations, e.g. supply-chain management
• Different underlying technologies:

• Web Services
• GRID computing
• Cloud computing

• Dynamic partner selection: negotiation of QoS – possibly involving several
exchanges

67
SEG3101 (Fall 2010). Requirements Verification and Validation

The problem

(early phase of the software development process)

• Define
• Global functional requirements

• Non-functional requirements

• Make high-level architectural choices
• Identify system components

• Define underlying communication service

• Define behavior of system components:
• Locally performed functions
• Communication protocol

• Required messages to be exchanged and order of exchanges

• Coding of message types and parameters

68
SEG3101 (Fall 2010). Requirements Verification and Validation

Issues

• Define
• Global functional

requirements
• Non-functional

requirements

• Make high-level
architectural choices

• Identify system
components

• Define underlying
communication service

• Define behavior of
system components

• Local functions
• Protocol:

• Required messages to
be exchanged and order
of exchanges

• Coding of message types
and parameters

What language / notation to use for defining global
requirements (dynamic behavior)

Architectural choices have strong impact on
performance

Automatic derivation of component behaviors ? e.g.

[Bochmann 2007]

Performance prediction – based on component
behavior

• Response time, Throughput, Reliability

Choice of middleware platform for inter-process
communication

• E.g. Java RMI, Web Services, etc.

69
SEG3101 (Fall 2010). Requirements Verification and Validation

Example: Taxi system (an activity diagram - each activity is a collaboration between several roles: client,
taxi, manager)

new client C

Request Free

Assign

Meet

Pick-up

Drive

Pay

FreeWithdraw

new taxi T
taxi leaves

client leaves

client
leaves

T

T

T

T
T
T T

T

T

C

C

C C

M

C

M

M

M

M

M

M : taxi manager

initiating role

terminating
roles

Off-duty

70
SEG3101 (Fall 2010). Requirements Verification and Validation

Taxi System
Detailed definitions of collaborations

req
C M

Request

meet

Drive

OK

CM

Meet

T
drive

OK

C T

assign

C

Assign

T

assign

M

assign

C T

assign

req free

meet

OK

drivepay

OK

off-duty

Example scenario
(sequence diagram)

71
SEG3101 (Fall 2010). Requirements Verification and Validation

Taxi System : Problematic scenarios

M

assign

C T

assign

req
free

non-local
choice

[Gouda 84] suggests:
define different priorities

for different roles

M

assign

C T

assign

req free

meet
with-
draw

race
condition

M

assign

C1 T

assign

req
free

C2

pick-up

non-local
Choice

(conflict over taxi)
“implied scenario”:

[Alur 2000] component behaviors
that realize the normal scenario

will also give rise to implied scenarios

Model transformations:
Deriving prototype
implementations

73
SEG3101 (Fall 2010). Requirements Verification and Validation

Code generation from behavioral models

• This has been explored in research projects since the
1980ies for extended FSM languages and commercial tools
have been around since the 1990ies, in particular for SDL,
Statecharts and other notations – now also for UML State
machines.

